Trigonometry Formulas

Trigonometry formulas are your best friend in trigonometry. Memorize these to help you solve all trigonometry related problems you may run into.

6 Trig Functions

sinθ=yroroppositehypotenusecosθ=xroradjacenthypotenusetanθ=yxoroppositeadjacent\sin\theta=\frac{y}{r} \hspace{2 mm}\hspace{2mm}\textnormal{or}\hspace{2mm} \frac{\text{opposite}}{\text{hypotenuse}} \hspace {5mm} \cos\theta=\frac{x}{r}\hspace{2mm}\textnormal{or}\hspace{2mm}\frac{\text{adjacent}}{\text{hypotenuse}}\hspace{5mm} \tan\theta=\frac{y}{x}\hspace{2mm}\textnormal{or}\hspace{2mm}\frac{\text{opposite}}{\text{adjacent}}
cscθ=ryorhypotenuseoppositesecθ=rxorhypotenuseadjacentcotθ=xyoradjacentopposite\csc\theta=\frac{r}{y}\hspace{2mm}\textnormal{or}\hspace{2mm}\frac{\text{hypotenuse}}{\text{opposite}}\hspace{5mm} \sec\theta=\frac{r}{x}\hspace{2mm}\textnormal{or}\hspace{2mm}\frac{\text{hypotenuse}}{adjacent}\hspace{5mm} \cot\theta=\frac{x}{y}\hspace{2mm}\textnormal{or}\hspace{2mm}\frac{\text{adjacent}}{\text{opposite}}

Quadrantal Angles

0,90,180,270,3600^\circ, 90^\circ, 180^\circ,270^\circ,360^\circ

Reciprocal Identities

sinθ=1cscθcscθ=1secθtanθ=1cotθ\sin\theta=\frac{1}{\csc\theta}\hspace{2mm}\csc\theta=\frac{1}{\sec\theta}\hspace{2mm}\tan\theta=\frac{1}{\cot\theta}
cscθ=1sinθsecθ=1cosθcotθ=1tanθ\csc\theta=\frac{1}{\sin\theta}\hspace{2mm}\sec\theta=\frac{1}{\cos\theta} \hspace{2mm} \cot\theta=\frac{1}{\tan\theta}

Pythagorean Identities

1.sin2θ+cos2θ=12.tan2θ+1=sec2θ3.cot2θ+1=csc2θ1. \sin^2\theta+\cos^2\theta=1 \\2.\tan^2\theta+1=\sec^2\theta \\3.\cot^2\theta+1=\csc^2\theta

The Pythagorean Identities can be rewritten in the following way:

1.cos2θ=1sin2θ2.sec2θ1=tan2θ3.csc2θcot2θ=11.\cos^2\theta=1-\sin^2\theta\\2.\sec^2\theta-1=tan^2\theta\\3.\csc^2\theta-\cot^2\theta=1

For more information on the Pythagorean identities and how they can be used, click here.

Quotient Identities

tanθ=sinθcosθcotθ=cosθsinθ\tan\theta=\frac{sin\theta}{\cos\theta}\hspace{5mm}\cot\theta=\frac{\cos\theta}{\sin\theta}

*Trick to remember the signs in each quadrant

Range of Trig Functions

sinθandcosθ[1,1]\sin\theta \hspace{2mm} \textnormal{and} \hspace{2mm} \cos\theta \hspace{2mm} [-1,1]
tanθandcotθ(,)\tan\theta \hspace {2mm} \textnormal{and} \cot\theta \hspace{2mm} (-\infty,\infty)
cscθandsecθ(,)[1,)\csc\theta \hspace{2mm} \textnormal{and} \hspace{2mm} \sec\theta \hspace{2mm} (-\infty,\infty)\cup[1,\infty)

Cofunction Identities

sinθ=cos(90θ)tanθ=cot(90θ)secθ=csc(90θ)\sin\theta=\cos(90^\circ-\theta) \\\tan\theta=\cot(90^\circ-\theta) \\\sec\theta=\csc(90^\circ-\theta)

Formula for Arc Length

S=rθ\textnormal{S}=\textnormal{r}\theta

*Theta is in radians!

r = radius, S = the arc length

Formula for Area of a Sector

A=12r2θ\textnormal{A}=\frac{1}{2}\textnormal{r}^2\theta

r = radius, A = area

Linear Speed Formula

V=storV=rω\textnormal{V}=\frac{s}{t}\hspace{2mm}\textnormal{or}\hspace{2mm}\textnormal{V}=\textnormal{r}\omega

Angular Speed Formula

ω=θt\omega=\frac{\theta}{t}

*Theta is in radians

For more information on the linear and angular speed formulas and examples of how they are used, click here.

Even Functions

cos(θ)=cosθsec(θ)=secθ\cos(-\theta)=\cos\theta \\ \sec(-\theta)=\sec\theta

Even functions are symmetric with the y-axis.

Odd Functions

sin(θ)=sinθcsc(θ)=cscθtan(θ)=tanθcot(θ)=cotθ\sin(-\theta)=-\sin\theta\\\csc(-\theta)=-\csc\theta\\\tan(-\theta)=-\tan\theta\\\cot(-\theta)=-\cot\theta

Odd functions are symmetric with the origin.

Cofunction Identities

cos(π2θ)=sinθ,sin(π2θ)=cosθ\cos(\frac{\pi}{2}-\theta)=\sin\theta,\hspace{1mm}\sin(\frac{\pi}{2}-\theta)=\cos\theta
sec(π2θ)=cscθ,csc(π2θ)=secθ\sec(\frac{\pi}{2}-\theta)=\csc\theta,\hspace{1mm}\csc(\frac{\pi}{2}-\theta)=\sec\theta
tan(π2θ)=cotθ,cot(π2θ)=tanθ\tan(\frac{\pi}{2}-\theta)=\cot\theta,\hspace{1mm}\cot(\frac{\pi}{2}-\theta)=\tan\theta

Sum and Difference Identities for Cosine

cos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB\cos(\textnormal{A+B) = cosAcosB - sinAsinB} \\\cos(\textnormal{A-B) = cosAcosB + sinAsinB}

Be sure to note that:

cos(A+B) does not equal cosA + cosB

cos(A-B) does not equal cosA – cosB

For more in depth coverage of the sum and difference identities for cosine and examples of how they are used, click here.

Sum and Difference Identities for Sine

sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinB\textnormal{sin(A+B) = sinAcosB + cosAsinB}\\\textnormal{sin(A-B) = sinAcosB - cosAsinB}

Sum and Difference Identities for Tangent

tan(A+B)=tanA + tanB1(tanAtanB)\tan(\textnormal{A+B)}=\frac{\tan\textnormal{A + tanB}}{1-(\textnormal{tanA}\cdot\textnormal{tanB)}}
tan(A-B)=tanA - tanB1+(tanAtanB)\tan(\textnormal{A-B)}=\frac{\tan\textnormal{A - tanB}}{1+(\textnormal{tanA}\cdot\textnormal{tanB)}}

Double Angle Formulas

Cosine

1.cos(2A)=cos2Asin2A1. \cos(2\textnormal{A})=\cos^2\textnormal{A}-\sin^2\textnormal{A}
2.cos(2A)=2cos2Asin2A2. \cos(2\textnormal{A})=2\cos^2\textnormal{A}-\sin^2\textnormal{A}
3.cos(2A)=1sin2A3. \cos(2\textnormal{A})=1-\sin^2\textnormal{A}

Sine

4.sin(2A)=2sinAcosA4.\sin(2\textnormal{A})=2\sin\textnormal{A}\cos\textnormal{A}

Tangent

5.tan(2A)=2tanA1tan2A5.\tan(2\textnormal{A})=\frac{2\tan\textnormal{A}}{1-\tan^2\textnormal{A}}
6.tan(2A)=sin(2A)cos(2A)6.\tan(2\textnormal{A})=\frac{\sin(2\textnormal{A})}{\cos(2\textnormal{A})}

Product-to-Sum Identities

1.cosAcosB = 12[cos(A + B) + cos(A - B)]1.\textnormal{cosAcosB = }\frac{1}{2}[\textnormal{cos(A + B) + cos(A - B)}]
2.sinAsinB = 12[cos(A - B) - cos(A + B)]2. \textnormal{sinAsinB = }\frac{1}{2}[\textnormal{cos(A - B) - cos(A + B)}]
3.sinAcosB = 12[sin(A + B) + sin(A - B)]3. \textnormal{sinAcosB = }\frac{1}{2}[\textnormal{sin(A + B) + sin(A - B)]}
4.cosAsinB = 12[sin(A + B) - sin(A-B)]4. \textnormal{cosAsinB = }\frac{1}{2}[\textnormal{sin(A + B) - sin(A-B)]}

Sum-to-Product Identities

1.sinA+sinB = 2sin(A+B2)cos(AB2)1. \textnormal{sinA+sinB = 2sin}(\frac{\textnormal{A}+\textnormal{B}}{2})\cos(\frac{\textnormal{A}-\textnormal{B}}{2})
2.sinA-sinB = 2cos(AB2)sin(AB2)2. \textnormal{sinA-sinB = 2cos}(\frac{\textnormal{A}-\textnormal{B}}{2})\sin(\frac{\textnormal{A}-\textnormal{B}}{2})
3.cosA+cosB = 2cos(A+B2)cos(AB2)3. \textnormal{cosA+cosB = 2cos}(\frac{\textnormal{A}+\textnormal{B}}{2})\cos(\frac{\textnormal{A}-\textnormal{B}}{2})
4.cosA-cosB = -2sin(A+B2)sin(AB2)4. \textnormal{cosA-cosB = -2sin}(\frac{\textnormal{A}+\textnormal{B}}{2})\sin(\frac{\textnormal{A}-\textnormal{B}}{2})

For a helpful video on sum to product identities, click here.

Half-Angle Identities

sinx2=±1cosx2\sin\frac{x}{2}=\pm\sqrt{\frac{1-\cos\textnormal{x}}{2}}
cosx2=±1+cosx2\cos\frac{x}{2}=\pm\sqrt{\frac{1+\cos\textnormal{x}}{2}}
tanx2=±1cosx1+cosx\tan\frac{x}{2}=\pm\sqrt{\frac{1-\cos\textnormal{x}}{1+\cos\textnormal{x}}}

Conclusion

Hopefully you find the trigonometry formulas useful going forward! If this article was helpful to you or if you have any questions, comments, or concerns, please leave a comment below!